\#LancsBox Innovation in Corpus Linguistics

\#LancsBox X is a powerful tool for the analysis of language: millions and billions of words.

Download it for free.

Brezina, V., Platt, W. (2024). \#LancsBox X 4.0.0 [software package], lancsbox.lancaster.ac.uk
Contents
1 Downloading and running \#LancsBox X 4
2 Adding corpora 6
2.1 Visual summary: Corpus hub 6
2.2 My data 6
2.3 Web 8
2.4 Exporting corpora 8
3 KWIC tool (Key Word In Context) 9
3.1 KWIC: An overview. 9
3.2 Multiple panels 10
3.3 Metadata columns 11
3.4 Filters 11
3.5 Summary table 12
3.6 Working with subcorpora 13
4 GraphColl 15
4.1 GraphColl: An overview 15
4.2 Producing a collocation graph 16
4.3 Reading Collocation Tables 16
4.4 Reading collocation graph 17
4.5 Extending graph to a collocation network 18
4.6 Shared collocates 19
4.7 Problems with graphs: overpopulated graphs 20
4.8 Reporting collocates: CPN. 21
5 Words tool 22
5.1 Words: Overview 22
5.2 Producing frequency lists 23
5.3 Producing keywords and key n- grams 23
5.4 Word cloud 24
6 Text tool 26
6.1 Text: Overview 26
7 Searching in \#LancsBox 28
8 spaCy POS tagset: English 32
9 spaCy dependency tags 33
10 CLAWS tagset (C7) 34
USAS semantic tagset 38
Definitions of smart searches 41
Glossary 44

\#LancsBox X: License

\#LancsBox is licensed under BY-NC-ND Creative commons license. \#LancsBox is free for non-commercial use. The full license is available from: http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

1 Downloading and running \#LancsBox X

\#LancsBox is a new-generation corpus analysis tool. Version X has been designed for 64-bit operating systems (Windows 64-bit, Mac and Linux) that allow the tool's best performance.
(1) Select and download: Select the version suitable for your operating system and download installer to your computer.

Discover \#LancsBox X

Our app is available for free for all major operating systems. Download it now!

Or simply click on DOWNLOAD NOW FOR FREE

(2) Run installer

\#LancsBox is safe to run. Double-click on the installer file and follow the steps in the installer. Always install \#LancsBox to a folder, where the tool has 'read and write' privileges such as the Users folder (default) or Desktop; On Windows, never install \#LancsBox to Program Files.

After a typical installation, \#LancsBox will be located

Windows
This PC > Windows $(\mathrm{C}:)$ > Users > brezina > LancsBoxX

Mac
Macintosh HD>Users>*username*>\# LancsBox X

Please note that you may need to give the installer the privileges to run on your machine. On Windows, you might be asked for admin password.

On Mac, click on the Apple icon> System settings> Privacy \& Security
Scroll down to Security, where you should be able to see '\#LancsBox X Installer app'. Click on 'Open Anyway'.

2 Adding corpora

\#LancsBox X is designed for very large corpora; it natively supports XML, which allows working with rich metadata. Data can be imported into \#LancsBox very easily in any format (txt, docx, pdf..). \#LancsBox also has a powerful web scraping functionality.

2.1 Visual summary: Corpus hub

From any tool, you can add more corpora by clicking the corpus name and selecting the "add corpora" option from the dropdown menu.

Add corpora
Corpus hub

You can:

- Preview a list of available corpora in Corpus hub.
- Download existing corpora such as the BNC2014.
- Load your own data under My data.
- Create corpora from the Web.
The Lancaster Cor... 1 Chinese 83...

Tip: You can adjust the zoom level using the keyboard shortcuts Ctrl - and Ctrl + (Cmd - and Cmd + on a Mac).

2.2 My data

\#LancsBox allows you to work with your own corpora. \#LancsBox supports a wide range of file formats (txt, docx, pdf, pptx, x|sx...) or XML.

.txt	XML with w elements
We can pick up on the last comment. Once we are in the grip of reflective thinking it is very hard, if not impossible, for us to see our ethical justifications of our ethical concepts, say, in a genuine way: we will always be drawn to the thought that this is all local. In addition, we will no longer see such judgements as embodying any sort of knowledge.	

1. Prepare your data in a folder.
2. On the 'My data' tab provide information about the corpus and navigate to the data (individual files or folders with subfolders). You can also drag and drop data into the box.

Add corpora

3. You can also automatically annotate (tag) corpus for pos, headword, grammatical relation and semantic (USAS) category.
4. Click on 'Load corpus'.
5. Once the corpus is loaded, click on 'Continue'

2.3 Web

\#LancsBox allows you to easily scrape data from the web and create your own corpus.

1. On the 'Web tab provide information about the corpus you want to create (name, language).
2. Paste a list of URLs, which you want to scrape at depth 1.
3. Decide on the additional parameter or leave defaults.
4. Click on 'Create corpus'.
5. Once the corpus is created, click on 'Continue'

2.4 Exporting corpora

\#LancsBox allows you to export corpora in XML. This functionality is available for corpora with unrestricted access.
Hover your mouse over the name of a corpus and click on the 'Export' \odot icon.

3 KWIC tool (Key Word In Context)

The KWIC tool generates a list of all instances of a search term in a corpus in the form of a concordance. It can be used, for example, to:

- Find the frequency of a word or phrase in a corpus.
- Find frequencies of different word classes such as nouns, verbs, adjectives.
- Find complex linguistic structures such as the passives, split infinitives etc. using 'smart searches'.
- Sort concordance lines.
- Compare multiple analyses side-by-side.

3.1 KWIC: An overview

The following is a simple, yet efficient design of the KWIC tool. The single search box allows users to carry out a wide variety of powerful searches.

Search completed.
Click a row in a table to select it. Hold the Ctrl or Cmd key while clicking to select multiple rows. Selected rows can be copied with the Ctrl+C / Cmd + C keyboard shortcut or by right clicking the table and selecting the "Copy" option.

Results can be also saved easily from the main menu, where 'Save' or 'Save all' \mathbf{L} can be selected to save the active panel (highlighted) or all panels respectively.

3.2 Multiple panels

\#LancsBox X allows analyses in multiple panels. Panels can be re-arranged by clicking and dragging on the top part of the window.

Multiple panels can be selected by holding down the Ctrl or Cmd key while clicking tools. This can be used to perform the same search in multiple panels at once.
(d \#LancsBox X 0.1.0.
Q PASSIV:

BNC2014		whole corpus		$\square \times$
PASSIVE		Hits: 889,747 (89.04)	Texts: 73,948/88,171	:
File	Left	Node	Right	
N...	... cheer. The Glasgow-based initiative	was...	as a Community Interest Company	
N...	later moved to Scotland having	bee...	indefinite leave to remain. On	
N...	the R\&B team identified. "People	are ...	as in need of help,	
N...	are keeping those skills from	bei...	he said. The aim is	
N...	parties are confident it can	be ...		
N...	...n to mortgage-backed securities that	wer...	between 2005 and 2007.	
M...	home. First, though, you'd	be ...	to view the tutorials, because	
M...	resources, but those resources must	be ...	carefully. Trees grow back painfully	
M...	slowly, rocks and iron that	are ...	from the surface are gone	
M...	are taken from the surface	are ...	forever, and even when forestry	
M...	decisions will still have to	be ...	to keep growth in harmony	
M...	as important as Adon, who	was...	in late winter of the	
M...	year. Larger settlements have to	be ...	things will slowly fall apart	
०...	Alan Davies and Irene Dorner	are ...	by the Board to have	
0...	Progress bar	e...	in 2016, in line with	
0...		de ...	The Annual Report, taken as	
०...	Code. It will contin to	be ...	during 2016. Reported to the	
0...	...itoring and $c \longrightarrow$	-	$\square \times$ the team	

Searching for PASSIVE.

3.3 Metadata columns

Efficient work with metadata is at the heart of \#LancsBox X. The concordance table displays different types of meta-data. Columns can be added according to the users' need. These columns can be sorted and filtered to display relevant information. To add or remove columns in a table, click on the table settings menu (${ }^{\text { }}$) and select items from the "Columns" submenu.

A \#LancsBox $\times 1.0 .0$	-	\square
Q [word="goes" hw="go" pos="V. ${ }^{\text {*" }}$ usas="M1"]		

BNC2014	pus * 100M			Add/remove columns			\times
[word="goes"	Hits: 13,783 (1.38) Texts: 6,894/88,171					>	
File	Left	N...	Right	Text: ge...	Text: subsubgenre	Text: date 4	
FictSci85.xml	and to hide it he	-		fiction	fiction: sci-fi: yo...	2010	
FictSci85.xml	but takes the money and	.	Columns with meta-data	fiction	fiction: sci-fi: yo...	2010	
FictMis $381 . \mathrm{xml}$	make money, and it all	...	directly into the company. You	fiction	fiction: miscellan...	2010	
FictMis $381 . \mathrm{xml}$	it says that, but whoever	..	to a hundred and fifty	fiction	fiction: miscellan...	2010	
FictMis399.xml	out in a passage that	...	to the surface.' I could	fiction	fiction: miscellan...	2010	
FictChi13.xml	before the cart of history	...	past.' 'Come on,' Wormersley said,	fiction	fiction: children's...	2010	
FictRom23.xml	No,' Dex said. 'If he	...	now, that's it, there	fiction	fiction: romance:...	2010	
FictRom23.xml	him how suddenly the world	..	and changes. Here he was	fiction	fiction: romance:...	2010	
FictRom23.xml	you today because when this	..	to court, you'll be	fiction	fiction: romance:...	2010	
FictMis 236 xml	works. Be creative: some paperwork	...	missing, one of your admirals	fiction	fiction: miscellan...	2010	
FictMis $390 . \mathrm{xml}$	body. I decided.' 'This just	...	to prove you are not	fiction	fiction: miscellan...	2010	
FictMys91.xml	get on there. Then it	...	to Central, where it gets	fiction	fiction: mystery: ...	2010	
FictMys91.xml	plastic is best, and that	.."	in one pile; blue in	fiction	fiction: mystery: ...	2010	
FictMys91.xml	near me and Gardo, it	...	down the far end, and	fiction	fiction: mystery: ...	2010	

Search completed.

3.4 Filters

Powerful filters can be applied to i) linguistic and ii) metalinguistic data. Simply hover the mouse pointer towards the right of any column header to find the filter options button ${ }^{\top}$.

Linguistic data can be filtered using the complete linguistic search functionality. For the left and the right context, choose the position(s) where the required linguistic feature should occur.

Metalinguistic data can be filtered according to three data types: i) categories, ii) numbers and iii) dates.

3.5 Summary table

Data displayed as concordance lines in KWIC can also be summarised using the 'Summary table' functionality 田 $^{\text {. Summary tables can be applied to both i) linguistic and ii) metalinguistic data. }}$

- Linguistic summaries include the following pieces of information: i) hits (absolute frequency), ii) number of texts, in which the linguistic feature occurs and iii) break-down according to any other available linguistic annotation such as pos-tags, semantic tags (usas), headwords (hw) etc. representing the linguistic feature in focus.

For example, the table above shows that at the L1 position in the concordance table the most frequent word is the, followed by this, first, same... It occurs with the absolute frequency of 26,991
at the L1 position in 3,892 different texts. In this position, the is tagged as two pos-tags AT and RT42 and 9 different semantic usas tags. The details about the tags and their frequencies are revealed in tooltips with the mouse-over functionality.

- Meta-data summaries show a break-down according to a selected category. They include the following pieces of information: i) size of the component, ii) hits (absolute frequency) in the component, iii) relative frequency in the component, and iv) number of texts in which the linguistic feature occurs in the component out of all texts in the component.

Summary tables can be copied \& pasted or saved; saving will also include a break-down by individual tags displayed in tooltips.

3.6 Working with subcorpora

\#LancsBox X allows users to define subcorpora. In this way, you can restrict searches to specific parts of a corpus. To define a new subcorpus, click the subcorpus dropdown and select the "new subcorpus" option.

In the overlay that opens you can select the criteria for defining your subcorpus and choose a name. Click "OK" once all criteria have been chosen. Your new subcorpus will be selected.

You can change subcorpus using the subcorpus dropdown. The edit and delete buttons in the dropdown allow you to change or remove the subcorpora you've defined.

4 GraphColl

The GraphColl tool identifies collocations and displays them in a table and as a collocation graph or network.
It can be used, for example, to:

- Find the collocates of a word or phrase.
- Find colligations (co-occurrence of grammatical categories).
- Visualise collocations and colligations.
- Identify shared collocates of words or phrases.
- Summarise discourse in terms of its 'aboutness'.

4.1 GraphColl: An overview

[^0]
4.2 Producing a collocation graph

GraphColl produces collocations tables and graphs on the fly. After selecting the appropriate settings you can start searching for the node and its collocates.

1. Select the appropriate settings for the collocation search:
BNC2014 academic prose \quad 20M word \quad L5 \quad - R5 \quad -
i) Corpus and subcorpus: Select existing or define new.
ii) Unit: The unit (e.g. word, headword/lemma (hw), part of speech (POS), lemma, lexeme) used for collocates.
iii) Span: how many words to the left (L) and to the right (R) of the node (search term) are being included in the search.
2. Type the search term into the search box (top) and press Enter.
3. This will produce a collocation table (left) and a collocation graph (right).

4.3 Reading Collocation Tables

A collocation table is a traditional way of displaying collocates. In GraphColl, the table shows the following pieces of information for each collocate: i) distribution, ii) collocation frequency and iii) frequency of the collocate anywhere in the corpus, iv) all relevant statistical measures. By default, the table is sorted (largest-smallest) according to the default collocation statistic, log Dice, and an appropriate frequency filter is applied.

1. The following is a visual description of the collocation table.

2. The meaning of the individual columns is:
i) Collocate: shows the collocate in question.
ii) Distribution: shows a bar chart indicating the textual position of the collocate (e.g. in the L5-R5 span).
iii) Freq (coll): displays the frequency of the collocation (combination of node + collocate).
iv) Freq (corpus): displays the frequency of the collocate anywhere in the corpus.
v) Stats (names): displays the values of the selected association measures; all available measures are computed at once. To display more or fewer click on the ' + ' button.

4.4 Reading collocation graph

The graph displays multiple dimensions according to the table settings (right-click on table header to assign a graph value to a column). To find out more about a collocate, hover your mouse over it to obtain concordance lines (KWIC preview), in which the collocates co-occurs with the node.

1. Edge length: By default, the edge (line) length is assigned to a default association measure to express the strength of collocation. The closer the collocate is to the node, the stronger the association between the node and the collocate ('magnet effect').
2. Size: The size of each collocate circle is by default assigned to frequency of the collocation value: Freq (coll). The more frequent the collocation is the larger the circle.
3. Colour: The colour of each circle is by default assigned to the frequency of the collocate anywhere in the corpus: Freq (corpus). The frequency range is displayed in the legend. so.000 no.000 ssomen
4. Position: The position of collocates around the node in the graph reflects the exact position of the collocates in text: some collocates appear (predominantly) to the left of the node, others to the right; others appear to the left and right at a similar frequency (middle position in the graph). For ease of display, if multiple collocates appear in a similar position and overlap, the tool 'spreads out' the collocates slightly.

right (R) collocates

4.5 Extending graph to a collocation network

A collocation network is an extended collocation graph that shows i) shared collocates and ii) crossassociations between several nodes.

1. To expand a simple collocation graph into a collocation network, either search for more nodes or left-double-click on a collocate in the graph.
2. A collocation network displays nodes with unique collocates (outer rim of the graph) and shared collocates (middle of the graph).

4.6 Shared collocates

Shared collocates are collocates shared by at least two nodes in a graph. Shared collocates are displayed in the middle of the graph with links to the relevant nodes.

1. A full list of shared collocates can be obtained by clicking on the ' i ' icon \mathbf{i}
2. The list of shard collocates is displayed in a tabular form.

Shared collocates				
Total: 344				
Collocate	No. of nodes \quad -	Subcorpus frequency	Collocation frequencies	
			study	research
been	2	38,707	508	541
areas	2	6,175	101	120
setting	2	2,120	71	40
these	2	49,621	415	405
approved	2	540	116	70
would	2	25,125	181	195
outcomes	2	3,833	108	67
_..alitation	\cdots	- 1777	-160	301

4.7 Problems with graphs: overpopulated graphs

If a collocation graph or network includes too many nodes and collocates, it becomes difficult to interpret. This is referred to as an overpopulated graph/network. The solution is either to change the filters in the table and make the threshold values more restrictive or to apply a filter to the graph.

The following figure shows an overpopulated graph on the left and a graph that is more easily interpretable on the right.

A graph with 392 collocates

A graph with the top 10 collocates

Choose the maximum number of collocates to show from each query. They will be selected by edge length variable.
Non-shared collocates per query

4.8 Reporting collocates: CPN

It is important to realise that there is no one definite sets of collocates: different statistical procedures and threshold values highlight different sets of collocates. We therefore need to report the statistical choices involved in the identification of collocations using standard notation called Collocation Parameters Notation (CPN). When saving the results, GraphColl saves the settings in the form of CPN.
Brezina et al. (2015) propose CPN as a specific notation to be used for accurate description of collocation procedure and replication of the results. The following parameters are reported:

Statistic ID	Statistic name	Statistic cut-off value	L and R span	Minimum collocate freq. (C)	Minimum collocation freq. (NC)	Filter
4b	MI2	3	L5-R5	5	1	Function words removed
4b-MI2(3), L5-R5, C5-NC1; function words removed						

Did you know?

The name GraphColl is an acronym for graphical collocations tool. GraphColl was the first module in \#LancsBox (v.1.0) with the other tools being added at a later stage. Graphical display of collocations and collocation networks is inspired by the work of Phillips (1985), who demonstrated the concept of lexical networks (Phillip's term for 'collocation networks') with small specialised corpora. GraphColl takes this notion further, offering different statistical choices and producing collocation networks on the fly with both small and large corpora.

Phillips, M. (1985). Aspects of text structure: An investigation of the lexical organisation of text. Amsterdam: North-Holland.

5 Words tool

The Words tool allows in-depth analysis of frequencies of words, n-grams, skip-grams, grammatical and semantic categories, as well as comparisons of corpora using the keywords technique.

It can be used, for example, to:

- Compute frequency and dispersion measures.
- Visualize frequency and dispersion in corpora.
- Compare corpora using the keyword technique.

5.1 Words: Overview

Changed corpus to BNC2014.
Left: Creating frequency lists, computing
Right: Visualizing frequencies dispersion and keywords.

5.2 Producing frequency lists

When the tool is opened, Words displays a frequency list (table) based on the default corpus and default settings. These settings can be changed easily to produce different frequency lists.

1. The following are the settings for frequency lists:

W								
BNC2014 2.0 claws 7	whole corpus	\checkmark	10...	word (lowercase)	\checkmark	single words		

i) Corpus and subcorpus: Select existing or define new.
ii) Unit: The unit (e.g. word, headword/lemma (hw), part of speech (POS), lemma, lexeme) used for the frequency list.
iii) Unit size: single words, 2-grams, 3-grams, 4-grams etc., and custom n-grams and skipgrams.

2. All frequency and dispersion measures are computed at once.
3. Frequency lists can be searched using the search box (top).
4. Frequency lists can be sorted by left-clicking on any column header.
5. Frequency lists can be filtered by applying a filter to a column.

Note: Please note that Frequency lists in \#LancsBox X are pre-computed and stored for later use. If you are creating a wordlist for the first time, this might take some time depending on the size of the corpus and complexity of its annotation (number of units used).

5.3 Producing keywords and key n-grams

The Words module computes a comparison of frequencies between two corpora/wordlists using a selected statistical measure.

1. Click on the key icon at the top right corner of the table
2. Select the appropriate reference corpus.
3. Sort and/or filter according to your preferred keyword statistics (Simple maths is used by default for sorting).

Keywords

Reference corpus: BNC2014 - whole corpus -

응 Terms: 865,860

Term	Focus rel. freq. (...	Reference rel. fr...	Simple maths \mathbf{V}	Log likelihood	\% difference	Log ratio
et	2,615.35	516.57	4.40	NaN	406.29	2.34
al.	1,991.15	383.75	4.32	NaN	418.87	2.38
fig.	1,120.67	215.91	3.86	688,915.67	419.06	2.38
studies	921.47	203.08	3.37	630,539.84	353.74	2.18
data	1,419.01	353.43	3.35	NaN	301.49	2.01
study	1,294.72	317.11	3.34	NaN	308.29	2.03
analysis	925.53	220.50	3.20	NaN	319.73	2.07
e.g.	514.51	102.49	3.03	NaN	401.99	2.33

5.4 Word cloud

The Words module creates word clouds based on words, n-grams, grammatical and semantic structures. Word clouds can be assigned different statistical properties from the table indicated by i) position, ii) font size and iii) colour in the graph.
幽

$$
\begin{aligned}
& \begin{array}{l}
\substack{\text { kind of } \\
\text { into a } \\
i} \\
i \text { can } \\
\text { able to } \\
\text { the first }
\end{array} \\
& \begin{array}{ll}
\text { n't it } & \text { she 's } \\
\text { lot of } \\
\text { she was }
\end{array} \text { do you to } \begin{array}{l}
\text { the first } \\
\text { on a }
\end{array} \text { that the } \\
& \text { no i as i she was do you he 's and i }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { the comprpary } \\
\text { migh be are you } \\
\text { anow }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { of her would nt is it could be at least idid out of one of it WaS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { et al. to her of its iome of sher sof had to of his but it i 've that 's } \\
& \text { ithought widch it has the last from a i'd as can be and it have a as } \\
& \begin{array}{l}
\text { ithought we can the last } \\
\text { got a of these of them }
\end{array} 1^{1} \mathrm{~d} \text {, and it have been the } \\
& \begin{array}{l}
\text { he'd is to iwould iknow would be be a is not as as a the with a } \\
\text { not to you have there are }
\end{array} \\
& \begin{array}{l}
\text { the group } \\
\text { well } i \text { she said } \\
\text { n't be to that } i \text { yo have there are } \\
\text { noing to to no }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { was like havent inten tour you has a and you a good that it can't i was } \\
& \text { that ine do not in their that he a bit if you } \\
& \begin{array}{l}
\text { that the and she nt have and in up to he said they are there was to get } \\
\text { did you }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { it to you've that } \\
\text { not be like a }
\end{array} \\
& \text { in the } \\
& \text { 's }
\end{aligned}
$$

$\begin{array}{lll}1 & 11711 & 20\end{array}$

Did you know?

The statistical technique of keyword analysis was originally developed by Mike Scott (1997) and it was implemented in WordSmith Tools. It relied on corpus comparison using the chi-squared test or the log-likelihood test. As Kilgarriff pointed out, the chi-squared test and the log-likelihood test are not entirely appropriate for this type of comparison. Kilgarriff's solution implemented in Sketch Engine was to compare corpora using a 'simple maths' procedure, a simple ratio between relative frequencies of words in the two corpora we compare. In addition to 'simple maths', \#LancsBox offers also other types of solutions for corpus comparison.

Scott, M. (1997). PC analysis of key words—and key key words. System, 25(2), 233-245.
Kilgarriff, A. (2009, July). Simple maths for keywords. In Proceedings of the Corpus Linguistics Conference. Liverpool, UK.

6 Text tool

The Text tool provides an overview of all files (texts) in the corpus, their size and lexical diversity. It also allows in-depth analysis of individual texts in the full view mode. The tool also searches texts and offer an overview table with a breakdown of frequencies and relative frequencies per file. The tool also highlights search terms in individual texts.

It can be used, for example, to:

- Explore corpora and their files (texts) before analysing them.
- Visualize corpus files and understand their distribution in terms of their sizes, lexical diversity and frequencies of linguistic features in them.
■ Qualitatively analyse texts.

6.1 Text: Overview

Changed subcorpus to whole corpus.
Left: Overview table or full text view.
Right: Visualizing corpus files

Searched KWIC for "new".

7 Searching in \#LancsBox

\#LancsBox offers powerful searches at different levels of corpus annotation using i) simple searches, ii) wildcard searches, iii) smart searches, iv) CQL searches.

1. Simple searches are literal searches for a particular word (new) or phrase (New York Times). Simple searches are case insensitive; this means that new, New, NEW, NeW etc. will return the same set of results.
2. Wildcard searches are searches including asterisk *as a special character.

Special character	Meaning	Example of use
$*$	0 or more characters	new* [new, news, newly, newspaper...]
	any word [with space]	new ${ }^{*}[$ new car, New York, new ideas...]

3. Punctuation searches:

To search for punctuation use forward slashes as in the examples below.

$$
\begin{aligned}
& \text { /?/ } \\
& \text { hello /,/ }
\end{aligned}
$$

4. Smart searches are searches predefined in the tool to offer users easy access to complex searches; smart searches are unique to \#LancsBox. These searches are used for searching for word classes (NOUN, VERB etc.), complex grammatical patterns (PASSIVE, SPLIT_INFINITIVE etc.) and semantic categories (PLACE_ADVERB).

The following smart searches are available for English:

ADJECTIVE
ADVERB
BE
BODY
BOOSTER
COLLECTIVE_NOUN
COLOUR
COMPARATIVE
COMPLEX_NOUN_PHRASE
CONDITIONAL
CONNECTOR
CONTRACTION
DEGREE ADVERB
DETERMINER
DO
DOWNTONER
EMOTION

EMOTION
EXISTENTIAL_THERE
FEMALE
FEMALE
FOOD
GERUND
HAVE
HYPHENATED_WORD
INDEFINITE_PRONOUN
INFINITIVE
INFINITIVE
INTERJECTION
LINKING_ADVERB
LONG_WORD
MALE
MALE
MEDIA
MODAL

NEGATION
NOMINALIZATION
NOUN
NUMBER
PARTICLE
PASSIVE
PAST_PARTICIPLE
PAST_TENSE
PEOPLE
PEOPLE
PERFECT_INFINITIVE
PHRASAL_VERB
PLACE_ADVERB
PLANET
PREPOSITIONAL_PHRASE
PRESENT_TENSE
PRONOUN
PROPER_NOUN
REFLEXIVE_PRONOUN
SHORT_WORD
SPLIT_INFINITIVE
SUPERLATIVE
SUPERNATURAL
SUPERNATURAL
SWEARWORDS
TECHNOLOGY
TIME
TIME_ADVERB
VERB

5. CQL (Corpus Query Language searches. \#LancsBox supports powerful searches using CQL.

These can be used for defining complex searches at different levels of annotation.
The levels of annotation and syntax depend on the tagging of the corpus, but for XML corpora it is common to have i) word, ii) headword/lemma (hw), iii) part-of-speech (POS), and iv) a user-defined tag. For example, a single token can be searched in CQL with
[word="goes" hw="go" pos="V.*" sem="M1"]

This will match every instance of the word goes with the headword go, the part-of-speech tag V.* (verb) and the usas tag M1 (Moving, coming and going). If a level of annotation is not specified, no restriction is applied at that level. Everything in double quotes is interpreted as a case insensitive regular expression.

To make queries case sensitive use double equals as in the example below:
[word=="US"]

To make negative searches use a combination of an exclamation mark and the equals sign, which means 'is not equal to' as in the example below:
[word!="new"]

To search for punctuation use forward slashes and the attribute punc as in the example below. Note that special characters such as the question mark or the full stop need to be escaped by using the backlash symbol \}
/punc="|?|\.|,|;"/

Multiple tokens can be placed in sequence. An empty pair of square brackets [] will match any token. Tokens can be repeated X times using the syntax $\{X\}$, and repeated anywhere between Y and Z times using the syntax $\{Y, Z\}$. The shorthand for $\{0,1\}$ is a question mark. Thus, for instance, the following CQL expression

$$
\text { [pos="VB.*"] []\{0,3\} [pos="V.N"]? }
$$

is interpreted as a verb to be (VB. ${ }^{*}$) followed by between 0 and 3 tokens without restriction ([]\{0,3\}) and optionally followed by the past participle (V.N).

Parts of a query can also be wrapped in parentheses (), allowing a quantifier such as $\{1,2\}$ to apply to sequence of tokens-e.g. ([pos="N.* "] [word="and"])\{2\}. Words, phrases and smart searches can be used anywhere CQL tokens can-e.g. very\{2\} ADJECTIVE\{1,2\} [hw="year"].

CQL also supports searching XML structure. This search matches every <u></u> element, representing utterances: $\langle u />$. The following matches every utterance where the n attribute is 1 and the nationality attribute is British or American:
<u n="1" nationality="British|American"/>

These element queries can be combined with the other types of queries using the within syntax:
[pos="D.* "] green NOUN within <text genre="newspapers"/>

This query matches every instance of a determiner followed by "green" followed by a noun within newspaper texts. The left and right hand sides of the within query can be anything; they can also be other within queries:
(<emoji/> within please) within (<e/> within <text genre="elanguage"/>)

8 spaCy POS tagset: English

CC	conjunction, coordinating	PRP\$	pronoun, possessive
CD	cardinal number	RB	adverb
DT	determiner	RBR	adverb, comparative
EX	existential there	RBS	adverb, superlative
FW	foreign word	RP	adverb, particle
IN	conjunction, subordinating or preposition	SYM	symbol
JJ	adjective	то	infinitival to
JJR	adjective, comparative	UH	interjection
JJS	adjective, superlative	VB	verb, base form
LS	list item marker	VBZ	verb, 3 rd person singular present
MD	verb, modal auxillary	VBP	verb, non-3rd person singular present
NNNDE	CY TAG noun, singular or mass	VBD	verb, past tense
NNS	noun, plural	VBN	verb, past participle
NNP	noun, proper singular	VBG	verb, gerund or present participle
NNPS	noun, proper plural	WDT	$w h$-determiner
PDT	predeterminer	WP	wh-pronoun, personal
POS	possessive ending	WP\$	wh-pronoun, possessive
PRP	pronoun, personal	WRB	wh-adverb

9 spaCy dependency tags

acl	clausal modifier of noun (adjectival clause)
acomp	adjectival complement
advcl	adverbial clause modifier
advmod	adverbial modifier
agent	agent
amod	adjectival modifier
appos	appositional modifier
attr	attribute
aux	auxiliary
auxpass	auxiliary (passive)
case	case marking
cc	coordinating conjunction
ccomp	clausal complement
compound	compound
conj	conjunct
csubj	clausal subject
csubjpass	clausal subject (passive)
dative	dative
dep	unclassified dependent
det	determiner
dobj	direct object
expl	expletive
intj	interjection
mark	marker
meta	meta modifier
neg	negation modifier
nmod	modifier of nominal
npadvmod	noun phrase as adverbial modifier
nsubj	nominal subject
nsubjpass	nominal subject (passive)
nummod	numeric modifier
oprd	object predicate
parataxis	parataxis
pcomp	complement of preposition
pobj	object of preposition
poss	possession modifier
preconj	pre-correlative conjunction
predet	None
prep	prepositional modifier
prt	particle
punct	punctuation
quantmod	modifier of quantifier
relcl	relative clause modifier
xcomp	open clausal complement

10 CLAWS tagset (C7)

Source: http://ucrel.lancs.ac.uk/claws7tags.html

APPGE possessive pronoun, pre-nominal (e.g. my, your, our)
AT article (e.g. the, no)
AT1 singular article (e.g. a, an, every)
BCL before-clause marker (e.g. in order (that), in order (to))
CC coordinating conjunction (e.g. and, or)
CCB adversative coordinating conjunction (but)
CS subordinating conjunction (e.g. if, because, unless, so, for)
CSA as (as conjunction)
CSN than (as conjunction)
CST that (as conjunction)
CSW whether (as conjunction)
DA after-determiner or post-determiner capable of pronominal function (e.g. such, former, same)
DA1 singular after-determiner (e.g. little, much)
DA2 plural after-determiner (e.g. few, several, many)
DAR comparative after-determiner (e.g. more, less, fewer)
DAT superlative after-determiner (e.g. most, least, fewest)
DB before determiner or pre-determiner capable of pronominal function (all, half)
DB2 plural before-determiner (both)
DD determiner (capable of pronominal function) (e.g any, some)
DD1 singular determiner (e.g. this, that, another)
DD2 plural determiner (these,those)
DDQ wh-determiner (which, what)
DDQGE wh-determiner, genitive (whose)
DDQV wh-ever determiner, (whichever, whatever)
EX existential there
FO formula
FU unclassified word
FW foreign word
GE germanic genitive marker - (' or's)
IF for (as preposition)
II general preposition
10 of (as preposition)
IW with, without (as prepositions)

JJ	general adjective
JJR	general comparative adjective (e.g. older, better, stronger)
JJT	general superlative adjective (e.g. oldest, best, strongest)
JK	catenative adjective (able in be able to, willing in be willing to)
MC	cardinal number, neutral for number (two, three..)
MC1	singular cardinal number (one)
MC2	plural cardinal number (e.g. sixes, sevens)
MCGE	genitive cardinal number, neutral for number (two's, 100's)
MCMC	hyphenated number (40-50, 1770-1827)
MD	ordinal number (e.g. first, second, next, last)
MF	fraction, neutral for number (e.g. quarters, two-thirds)
ND1	singular noun of direction (e.g. north, southeast)
NN	common noun, neutral for number (e.g. sheep, cod, headquarters)
NN1	singular common noun (e.g. book, girl)
NN2	plural common noun (e.g. books, girls)
NNA	following noun of title (e.g. M.A.)
NNB	preceding noun of title (e.g. Mr., Prof.)
NNL1	singular locative noun (e.g. Island, Street)
NNL2	plural locative noun (e.g. Islands, Streets)
NNO	numeral noun, neutral for number (e.g. dozen, hundred)
NNO2	numeral noun, plural (e.g. hundreds, thousands)
NNT1	temporal noun, singular (e.g. day, week, year)
NNT2	temporal noun, plural (e.g. days, weeks, years)
NNU	unit of measurement, neutral for number (e.g. in, cc)
NNU1	singular unit of measurement (e.g. inch, centimetre)
NNU2	plural unit of measurement (e.g. ins., feet)
NP	proper noun, neutral for number (e.g. IBM, Andes)
NP1	singular proper noun (e.g. London, Jane, Frederick)
NP2	plural proper noun (e.g. Browns, Reagans, Koreas)
NPD1	singular weekday noun (e.g. Sunday)
NPD2	plural weekday noun (e.g. Sundays)
NPM1	singular month noun (e.g. October)
NPM2	plural month noun (e.g. Octobers)
PN	indefinite pronoun, neutral for number (none)
PN1	indefinite pronoun, singular (e.g. anyone, everything, nobody, one)
PNQO	objective wh-pronoun (whom)
PNQS	subjective wh-pronoun (who)
PNQV	wh-ever pronoun (whoever)

PNX1	reflexive indefinite pronoun (oneself)
PPGE	nominal possessive personal pronoun (e.g. mine, yours)
PPH1	3 rd person sing. neuter personal pronoun (it)
PPHO1	3rd person sing. objective personal pronoun (him, her)
PPHO2	3rd person plural objective personal pronoun (them)
PPHS1	3rd person sing. subjective personal pronoun (he, she)
PPHS2	3rd person plural subjective personal pronoun (they)
PPIO1	1st person sing. objective personal pronoun (me)
PPIO2	1st person plural objective personal pronoun (us)
PPIS1	1st person sing. subjective personal pronoun (I)
PPIS2	1st person plural subjective personal pronoun (we)
PPX1	singular reflexive personal pronoun (e.g. yourself, itself)
PPX2	plural reflexive personal pronoun (e.g. yourselves, themselves)
PPY	2nd person personal pronoun (you)
RA	adverb, after nominal head (e.g. else, galore)
REX	adverb introducing appositional constructions (namely, e.g.)
RG	degree adverb (very, so, too)
RGQ	wh- degree adverb (how)
RGQV	wh-ever degree adverb (however)
RGR	comparative degree adverb (more, less)
RGT	superlative degree adverb (most, least)
RL	locative adverb (e.g. alongside, forward)
RP	prep. adverb, particle (e.g about, in)
RPK	prep. adv., catenative (about in be about to)
RR	general adverb
RRQ	wh- general adverb (where, when, why, how)
RRQV	wh-ever general adverb (wherever, whenever)
RRR	comparative general adverb (e.g. better, longer)
RRT	superlative general adverb (e.g. best, longest)
RT	quasi-nominal adverb of time (e.g. now, tomorrow)
TO	infinitive marker (to)
UH	interjection (e.g. oh, yes, um)
VBO	be, base form (finite i.e. imperative, subjunctive)
VBDR	were
VBDZ	was
VBG	being
VBI	be, infinitive (To be or not... It will be ..)
VBM	am

VBN	been
VBR	are
VBZ	is
VDO	do, base form (finite)
VDD	did
VDG	doing
VDI	do, infinitive (I may do... To do...)
VDN	done
VDZ	does
VHO	have, base form (finite)
VHD	had (past tense)
VHG	having
VHI	have, infinitive
VHN	had (past participle)
VHZ	has
VM	modal auxiliary (can, will, would, etc.)
VMK	modal catenative (ought, used)
VVO	base form of lexical verb (e.g. give, work)
VVD	past tense of lexical verb (e.g. gave, worked)
VVG	-ing participle of lexical verb (e.g. giving, working)
VVGK	-ing participle catenative (going in be going to)
VVI	infinitive (e.g. to give... It will work...)
VVN	past participle of lexical verb (e.g. given, worked)
VVNK	past participle catenative (e.g. bound in be bound to)
VVZ	-s form of lexical verb (e.g. gives, works)
XX	not, n't
ZZ1	singular letter of the alphabet (e.g. A,b)
plural letter of the alphabet (e.g. A's, b's)	
VZ2	
VI	

11 USAS semantic tagset

Source: $\underline{\text { http://ucrel.lancs.ac.uk/usas }}$

A1	GENERAL AND	A7	Definite (+ modals)
ABSTRAC	CT TERMS	A8	Seem
A1.1.1	General actions,	A9	Getting and giving;
making		posses	
A1.1.2	Damaging and	A10	Open/closed;
destroyi		Hiding/	Hidden; Finding;
A1.2	Suitability	Showin	
A1.3	Caution	A11	Importance
A1.4	Chance, luck	A11.1	Importance: Important
A1.5	Use	A11.2	Importance:
A1.5.1	Using	Notice	bility
A1.5.2	Usefulness	A12	Easy/difficult
A1.6	Physical/mental	A13	Degree
A1.7	Constraint	A13.1	Degree: Non-specific
A1.8	Inclusion/Exclusion	A13.2	Degree: Maximizers
A1.9	Avoiding	A13.3	Degree: Boosters
A2	Affect	A13.4	Degree: Approximators
A2.1	Affect:- Modify, change	A13.5	Degree: Compromisers
A2.2	Affect:-	A13.6	Degree: Diminishers
Cause/C	onnected	A13.7	Degree: Minimizers
A3	Being	A14	
A4	Classification		Exclusivizers/particulari
A4.1	Generally kinds,	zers	
groups,	examples	A15	Safety/Danger
A4.2	Particular/general;	B1	Anatomy and
detail		physiol	
A5	Evaluation	B2	Health and disease
A5.1	Evaluation:- Good/bad	B3	medicines and medical
A5.2	Evaluation:- True/false	treatm	
A5.3	Evaluation:- Accuracy	B4	Cleaning and personal
A5.4	Evaluation:-	care	
Authenticity		B5	Clothes and personal
A6	Comparing	belongings	
A6.1	Comparing:-	C1	Arts and crafts
Similar/different		E1	EMOTIONAL ACTIONS,
A6.2	Comparing:-	STATES AND PROCESSES	
Usual/unusual		General	
A6.3	Comparing:- Variety	E2	Liking

E3	Calm/Violent/Angry
E4	Happy/sad
E4.1	Happy/sad: Happy
E4.2	Happy/sad:
Contentment	
E5	Fear/bravery/shock
E6	Worry, concern,
confident	
F1	Food
F2	Drinks
F3	Cigarettes and drugs
F4	Farming \& Horticulture
G1	Government, Politics
and elections	
G1.1	Government etc.
G1.2	Politics
G2	Crime, law and order
G2.1	Crime, law and order:
Law and order	
G2.2	General ethics
G3	Warfare, defence and
the army; weapons	
H1	Architecture and kinds
of houses and buildings	
H2	Parts of buildings
H3	Areas around or near
houses	
H4	Residence
H5	Furniture and
household fittings	
11	Money generally
11.1	Money: Affluence
11.2	Money: Debts
11.3	Money: Price
12	Business
12.1	Business: Generally
12.2	Business: Selling
13	Work and employment

Q4.2 The Media:-
Newspapers etc.
Q4.3 The Media:- TV, Radio
and Cinema
S1 SOCIAL ACTIONS,
STATES AND PROCESSES
S1.1 SOCIAL ACTIONS, STATES AND PROCESSES
S1.1.1 SOCIAL ACTIONS, STATES AND PROCESSES
S1.1.2 Reciprocity
S1.1.3 Participation
S1.1.4 Deserve etc.
S1.2 Personality traits
S1.2.1 Approachability and Friendliness
S1.2.2 Avarice
S1.2.3 Egoism
S1.2.4 Politeness
S1.2.5 Toughness;
strong/weak
S1.2.6 Sensible
S2 People
S2.1 People:- Female
S2.2 People:- Male
S3 Relationship
S3.1 Relationship: General
S3.2 Relationship:
Intimate/sexual
S4 Kin
S5 Groups and affiliation
S6 Obligation and
necessity
S7 Power relationship
S7.1 Power, organizing
S7.2 Respect
S7.3 Competition
S7.4 Permission
S8 Helping/hindering
S9 Religion and the
supernatural
T1 Time
T1.1 Time: General
T1.1.1 Time: General: Past
T1.1.2 Time: General:
Present; simultaneous

T1.1.3	Time: General: Future	X2.5	Understand	X9.1	Ability:- Ability,
T1.2	Time: Momentary	X2.6	Expect	intelligence	
T1.3	Time: Period	X3	Sensory	X9.2	Ability:- Success and
T2	Time: Beginning and	X3.1	Sensory:- Taste	failure	
ending		X3.2	Sensory:- Sound	Y1	Science and
T3	Time: Old, new and	X3.3	Sensory:- Touch	technology in general	
young; age		X3.4	Sensory:- Sight	Y2	Information
T4	Time: Early/late	X3.5	Sensory:- Smell	technology and computing	
W1	The universe	X4	Mental object	Z0	Unmatched proper
W2	Light	X4.1	Mental object:-	noun	
W3	Geographical terms	Conceptual object		Z1	Personal names
W4	Weather	X4.2	Mental object:- Means,	Z2	Geographical names
W5	Green issues	method		Z3	Other proper names
X1	PSYCHOLOGICAL	X5	Attention	Z4	Discourse Bin
ACTIONS, STATES AND		X5.1	Attention	Z5	Grammatical bin
PROCESSES		X5.2		Z6	Negative
X2	Mental actions and		Interest/boredom/exci	Z7	If
processes		ted/energetic		Z8	Pronouns etc.
X2.1	Thought, belief	X6	Deciding	Z9	Trash can
X2.2	Knowledge	X7	Wanting; planning;	Z99	Unmatched
X2.3	Learn	choosing			
X2.4	Investigate, examine,	X8	Trying		
test, sea		X9	Ability		

12 Definitions of smart searches

$\begin{aligned} & \hline \text { ADJECTIV } \\ & \mathrm{E} \end{aligned}$	[pos="J.*"]																																																																																																																																																																																																																																																																																																																																																																																																																																								
ADVERB	[pos="R.*"]																																																																																																																																																																																																																																																																																																																																																																																																																																								
BE	[pos="VB.*"]																																																																																																																																																																																																																																																																																																																																																																																																																																								
BOOSTER	[hw="absolutely \|altogether	completely	enormously	entirely	extremely	fully	greatly	highly	intensely	perfectly	strongly	thoroughly	totally	utterly	very"]																																																																																																																																																																																																																																																																																																																																																																																																																										
COLLECTI VE NOUN	[hw="a" pos="D.*"][hw="aerie\|album	ambush	anthology	archipelago	argument	argumentation	armada	army	array	arsenal	ascension	assembly	aurora	badelynge	bag	bale	band	bank	banner	barrel	barren	bask	basket	batch	battery	bazaar	bed	bellowing	belt	bench	bevy	bew	bill	bind	bits	blessing	bloat	block	blush	board	bob	body	boil	boll	bond	book	bouquet	bow		brace	branch	brew	brigade	br ood	bubble	budget	building	bunch	bundle	bury	business	cache	canteen	caravan	cartload	cast	caste	catalogue	catch	cavalcade	celebration	cete	chain	charm	chatter	chattering	chest	chine	choir	chorus	circle	circus	clamour	clan	clash	clashing	class	clattering	clew	clique	cloud	clowder	cluck	clump	cluster	clutch	clutter	coalition	coil	collection	colony	column	comb	commonwealth	commun ion	community	company	compendium	confab	conflagration	confraternity	confusion	congregation	congress	conspiracy	constellation	converting	convocation	convoy	copse	cornucopia	corps	cortege	cost	cote	coterie	coven	cover	covert	covey	cowardice	cran	crash	crate	creche	crew	crop	crowd	cry	culture	death	deceit	deck	den	descent	desert	destruction	dicker	dissuising	dissimulation	di ving	division	doading	dole	dopping	dout	down	doyft	draft	draught	dray	drift	dropping	drove	drum	dule	durante	dynasty	earth	eleven	embarrassment	equivocation	erst	escargatoire	exaltation	f rest\|fraunch	fun	gaggle	galaxy	gam	gang	garland	garrison	gathering	gatling	gaze	generation	giggle	glaring	gleam	glide	glint	glitter	glory	glossary	grist	group	grove	gulp	hail	hand	haras	harem	h el\| kettle	kindle	kine	kingdom	knab	knob	knot	labour	lamentation	layer	lead	leap	leash	lepe	library	line	list	litter	lodge	loft	lounge	loveliness	machination	malapertness	marvel	mask	mass	match	melody	memory	menagerie	mess	mews	miller	mischief	mob	mouthful	movement	multiply	murder	murmuration	muscle	muster	mustering	mutation	mute	necklace	nest	neverthriving	nide	nose t\|party	passel	patrol	peal	peep	pencil	piddle	pile	pint	pit	piteousness	pitying	plague	platoon	plump	pocket	pod	ponder	pontification	pool	posse	pounce	poverty	prattle	prettying	prickle	pride	p ookery\|roost	rope	rouleau	round	rout	route	row	royalty	rumble	rump	rumpus	run	rush	salvo	sarcasm	sault	scatter	school	scold	scorn	scourge	screech	scurry	sea	sect	sedge	sequitur	series	ser ving	set	setting	sheaf	shelf	shimmer	shitload	shoal	shower	shrewdness	shuffle	siege	singular	sizzle	skein	skir		skulk	slate	sleuth	slew	slither	sloth	smack	snar		snatch	sneak	sord	sounder	soviet	sowse	span	spawn	spinney	spring	sprinkle	squad	squadron	stable	stack	staff	stage	stalk	stand	staple	stare	state	stench	stick	stock	storytelling	streak	stream	string	stud	suit	suite	superfluity	sut e	swarm	swirl	tassel	team	tenement	thought	threatening	thunder	tiding	tittering	toil	tok	torment	totter	tower	trace	train	trembling	tribe	trimming	trip	troop	troubling	troupe	truss	tuft	tumult	turn	ubiquity	unkindness	venue	vineyard	volery	wad	waddle	wake	walk	warren	watch	wealth	wedge	weyr	wheel	whiteness	whoop	wing	wisdom	wisp	wolfpack	wrack	wreath	yap	yoke	zap	zea		zoo"][hw="of"][pos="NN.*"]\{1,2\}
COMPARA TIVE	[pos="JJR\|RGR	RRR"]																																																																																																																																																																																																																																																																																																																																																																																																																																							
COMPLEX _NOUN PHRASE	[pos="J.*"]\{1,5\}[pos="NN.*"]																																																																																																																																																																																																																																																																																																																																																																																																																																								
CONDITIO NAL	[$\mathrm{hw=}=$ "iflunless"]																																																																																																																																																																																																																																																																																																																																																																																																																																								
$\begin{aligned} & \text { CONNECT } \\ & \text { OR } \\ & \hline \end{aligned}$	[pos=" ${ }^{\text {. }}$ *\| \mid S \mid CC" $]$																																																																																																																																																																																																																																																																																																																																																																																																																																								
$\begin{aligned} & \text { CONTRAC } \\ & \text { TION } \\ & \hline \end{aligned}$	[][word="'(s/re\|ve	d	m	em	II)	n't" pos="[^G].*"]																																																																																																																																																																																																																																																																																																																																																																																																																																			
DEGREE_ ADVERB	[hw="very\| really	too	quite	exactly	right	pretty	real	more	relatively" pos="R.*"]																																																																																																																																																																																																																																																																																																																																																																																																																																
$\begin{aligned} & \text { DETERMI } \\ & \text { NER } \\ & \hline \end{aligned}$	[pos="D.*"]																																																																																																																																																																																																																																																																																																																																																																																																																																								
DO	[hw="do" pos="VV.*"]																																																																																																																																																																																																																																																																																																																																																																																																																																								

DOWNTO NER	[hw="almost\|barely	hardly	merely	mildly	nearly	only	partially	partly	practically/scarcely	slightly	somewhat"]																												
EXISTENTI AL THERE	[pos="EX"]																																						
GERUND	[hw="(?!(.*thing \|evening	morning	viking)).\{2,\}ing" pos="NN[12]"]																																				
HAVE	[pos="VH.*"]																																						
INFINITIVE	[pos="TO"][pos="V.*"]																																						
HYPHENA TED_WOR D	[word=".*-.*"]																																						
INDEFINIT E_PRONO UN	[hw="anybody\|anyone	anything	everybody	everyone	everything	nobody	none	nothing	nowhere	somebody	someone	something"]																											
INFINITIVE	[pos="TO"][pos="V.*"]																																						
INTERJECT ION	[pos="UH"]																																						
LINKING_ ADVERB	[hw="then\|so	anyway	though	however	e\.?g\.?	i\.?e\.?	therefore	thus	nevertheless	nonetheless" pos="R.*"]																													
$\begin{aligned} & \text { LONG_W } \\ & \text { ORD } \end{aligned}$	[word=". $\{15$,$\} \}]$																																						
MODAL	[pos="MD"]																																						
NEGATIO N	[word="not\|.*n't	no	neither	nowhere	never	nor	none	nobody	nothing"]																														
NOMINAL IZATION	[word=".\{3,\}(tion\|tions	ment	ments	ness	nesses	ity	ities)"]																																
NOUN	[pos="N.*"]																																						
NUMBER	[pos="M.*"]																																						
PARTICLE	[pos="RP"]																																						
PASSIVE	[pos="VB[^0].*"][pos="R.*"]\{0,3\}[pos="V.N"]																																						
```PAST_TEN SE```	[pos="V.D.?"]																																						
PAST_PAR TICIPLE	[pos="V.N"]																																						
PERFECT_I NFINITIVE	[pos="TO"][pos="VH.*"][pos="V.N"]																																						
PHRASAL VERB	[pos="VV."][pos="PP.*"]\{0,1\}[pos="RP"]																																						
$\begin{aligned} & \text { PLACE_AD } \\ & \text { VERB } \\ & \hline \end{aligned}$	[hw="aboard\|above	abroad	across/ahead	alongside	around	ashore	astern	away	behind	below	beneath	beside	downhill	downstairs	downstream	east	far	hereabouts	indoors	inland	inshore	inside	locally	near	nearby	north	nowhere	outdoors	outside	overboard	overland	overseas	south	underfoot	underneath	uphill	upstairs	upstream	west"]
PREPOSITI ONAL PH RASE	[pos="I.*\|CS"][pos="J.*	PP.*	CC	D.*	RR	M.*	GE	N.*"]\{0,5\}[pos="N.*"]																															
```PRESENT_ PARTICIPL E```	[pos="V.GK?"]																																						


$\begin{aligned} & \hline \text { PRESENT_- } \\ & \text { TENSE } \end{aligned}$	[pos="V.z"]																																				
$\begin{aligned} & \text { PRONOU } \\ & N \end{aligned}$	[pos="P.**]																																				
PROPER NOUN	[pos="NP.*"]																																				
REFLEXIVE PRONOU N	[hw=".*sel(f\|ves)" pos="P.X."]																																				
$\begin{aligned} & \text { SHORT_W } \\ & \text { ORD } \end{aligned}$	[word=".\{1,3\}"]																																				
SPLIT_INFI NITIVE	[pos="TO"][pos="R.*"][pos="V.*"]																																				
SUPERLAT IVE	[pos="DAT \|JJT	RGT	RRT"]																																		
SWEARW ORDS	[hw="arse\|arsehole	bastard	bellend	bint	bitch	bloodclaat	bloody	bollocks	bugger	bullshit	clunge	cock	crap	cunt	damn	dick	dickhead	fanny	feck	fuck.*	gash	git	god	goddam	jesus	minge	minger	motherfucker	munter	piss	prick	punani	pussy	shit	sod	tit	twat"]
$\begin{aligned} & \text { TIME_AD } \\ & \text { VERB } \end{aligned}$	[hw="afterwards? \|again	earlier	early	eventually	formerly	immediately	initially	instantly	late	lately	later	momentarily	now	nowadays	once	originally	presently	previous	y	recently	shortly	simultaneo usly	soon	subsequently	today	tomorrow	tonight	yesterday"]									
VERB	[pos="V.*"]																																				
PEOPLE	[sem="S2\|S2:1	S2:2	S3	S3:1	S3:2	S4"]																															
MALE	[sem="S2:2"]																																				
FEMALE	[sem="S2:1"]																																				
SUPERNA TURAL	[sem="S9"]																																				
EMOTION	[sem="E\|E1	E2	E3	E4	E4:1	E4:2	E5	E6"]																													
TIME	[sem="T1\|T1:1	T1:1:1	T1:1:2	T1:2	T1:3	T2	T3	T4"]																													
PLANET	[sem="W1\|W2	W3	W4	W5 LL1	L2	L3"]																															
COLOR	[sem="04:3"]																																				
COLOUR	[sem="04:3"]																																				
BODY	[sem="B1\|B2	B3"]																																			
FOOD	[sem="F1\|F2"]																																				
TECHNOL OGY	[sem="Y1\|Y2"]																																				
MEDIA	[sem="Q4\|Q4:1	Q4:2	Q4:3	K1	K2	K3	K4"]																														

13 Glossary

Absolute (or raw) frequency - The number of times a linguistic feature occurs in a corpus or its part(s); the number of hits of a search query in a corpus.

Colligation - Systematic co-occurrence of grammatical categories (e.g. POS tags) in text identified statistically.

Collocate - A word that systematically occurs with the node (word or phrase of interest, search term).
Collocation - Systematic co-occurrence of words in text identified statistically.
Concordance line - A single line in the KWIC table, usually containing the node (search match) and several words before and after it (the right and left context).

Concordance is a typical form of display for examples of language use found in a corpus with the node (search match) in the middle and several words of context displayed on the left and. Concordance is sometimes also called a 'KWIC (display)'.

Corpus (pl. corpora) - A collection of language data that can be searched by a computer.
Frequency - The number of times a search query matches text in the corpus. A distinction is made between absolute (simple number of hits) and relative frequency (number of hits per X number of words).

KWIC - an abbreviation for 'keyword in context'. This is a typical form of display for examples found in a corpus with the node (word or phrase of interest) in the middle and several words of context displayed on the left and right. KWIC is sometimes also called a 'concordance'.

Left context - The words preceding a particular search match (node). Individual positions in the leftcontext are referred to as L1 (position immediately preceding), L2, L3 etc.

Lemma / Headword - All inflected forms belonging to one stem. For example, a lemma 'go' includes the following word forms (types): 'go', 'goes', 'went', 'going' and 'gone'.

Node - The word, phrase or grammatical structure of interest; the text matching a search query.

Part-of-speech (POS) - A grammatical category, a word class. Part-of-speech is usually assigned automatically using a process called part-of-speech tagging (see below).

Part-of-speech tagging (POS tagging) - A process of adding information about the grammatical category of each word in a text or corpus. For example, the following sentence was POS-tagged: Automatically_RB annotates_VBZ data_NNS for_IN part-of-speech_NN.

Regular expressions (regex) - A special meta-language that allows advanced users to search for many strings simultaneously.

Relative (or normalized) frequency (RF) is calculated as the absolute frequency of a search query divided by the total number of words searched (the number of words in the corpus or subcorpus). This number is usually multiplied by an appropriate basis for normalization (e.g. 10,000).

Right context - The words following a particular search match (node). Individual positions in the rightcontext are referred to as R1 (position immediately following), R2, R3 etc.

Subcorpus (pl. subcorpora) - A user-defined part of a corpus which searches can be restricted to. It can include whole texts or parts of multiple texts. In \#LancsBox X, subcorpora are defined using XML structure.

Tagging - The process of adding linguistic information to the words in a text or corpus, automatically or semi-automatically. See Part-of-speech tagging.

Text - A basic unit of a corpus; a corpus is a collection multiple texts.
Token - a single occurrence of a word form in a text or corpus.
XML - An abbreviation for Extensible Markup Language. A machine-readable way of writing information in text files that gives structure and annotation to the information. In corpora, XML can annotate words with part-of-speech information and give structure to texts, for example with sections and paragraphs.

Developed @ Lancaster University

[^0]: Closed shared collocate info.

